Daily Tutorial Sheet 6

Level - 2 | JEE Advanced Pattern

$$\textbf{76.(A)} \quad \text{Rate of reaction} = \frac{1}{2} \, \frac{-\Delta [N_2 O_5]}{\Delta t} = \frac{1}{4} \, \frac{\Delta [N O_2]}{\Delta t} = \, \frac{1}{4} \, \times \frac{5.2 \times 10^{-3}}{100} = \, 1.3 \times 10^{-5} \, \, \text{M} \, / \, \, \text{sec} \; .$$

77.(C)
$$2A + B \longrightarrow C$$

$$\frac{d[C]}{dt} = \frac{1}{2} \left(\frac{-d[A]}{dt} \right) \quad \Rightarrow \quad \frac{-d[A]}{dt} = 4.4 \times 10^{-3}$$

78.(B) For zero order reaction, rate is constant but for other reactions rate decreases as reaction proceed.

79.(A)
$$2A(g) \longrightarrow B(g) + C(s)$$
 Total Pressure

At t = 0 P₀ 0 0 P₀
At t = 10 min P₀ - 2x x 0 P₀ - x = 300
At t
$$\rightarrow \infty$$
 0 $\frac{P_0}{2}$ 0 $\frac{P_0}{2}$ = 200

$$\Rightarrow$$
 P₀ = 400 & x = 100

It means pressure of A drops from $400\ \text{Pa}$ to $200\ \text{Pa}$ in $10\ \text{min}$. So, half life is $10\ \text{min}$.

$$k = \frac{0.693}{t_{1/2}} = 0.0693 \ min^{-1}$$

80.(C)
$$[A]_t = [A]_0 - kt \Rightarrow t_{1/2} = \frac{[A]_0}{k} = \frac{a}{k}$$

81.(A)
$$1^{st}$$
 order reaction $0.8\,\mathrm{M} \rightarrow 0.4\,\mathrm{M}$, $t_{1/2} = 15\,\mathrm{min}$

$$0.1~\text{M} \rightarrow 0.05 \rightarrow 0.025~\text{M}$$

Time required is $2 \times t_{1/2} = 30$ min.

82.(D) Hydrolysis of ester is pseudo first order reaction.

83.(A)
$$r = k[A][B] = k \frac{n_A}{V} \cdot \frac{n_B}{V}$$

$$r' = k \frac{n_A}{V/4} \cdot \frac{n_B}{V/4} = 16 k \frac{n_A}{V} \cdot \frac{n_B}{V}$$
 \Rightarrow $r' = 16r$

84.(C)
$$t = \frac{1}{k} \ell n \left(\frac{100}{1} \right) = \frac{2 \ell n \ 10 \times t_{1/2}}{\ell n 2}$$

$$t = \frac{2 \times 2.303 \times 6.93}{0.693} \; min = 46.06 \; min$$

85.(B) Unit of k for 2^{nd} order reaction = L $mol^{-1}s^{-1}$